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We study the interpolation of certain classes of entire functions and their
derivatives at the nonnegative integers, which, under certain conditions, reduces
to the Birkoff interpolation of polynomials,

I. POLY A CO:'\DIT10:'\S

We begin by defining an infinite incidence matrix to be a matrix E .~

(ej.dU'(j,k<·C • with ('i,I, = 0 or I. E defines the interpolation problem

if ei,;' - I. (I)

where/is an entire function. If/satisfies (I), we say that/interpolates E.
Suppose that A is a linear class of entire functions, containing the zero

function e. If the trivial function eis the only function in A which interpolates
E, then we say E is poised with respect to A. Thus. if E is poised with respect
to A, then the solutionf Ell (if it exists) to the nonhomogeneous equations

if £'j.l: = I.

for given data {y/J, is unique in .11. Therefore, it is of interest to study which
arrangements of the entries of I's will guarantee E to be poised with respect
to some class A of entire functions. As we shall see, under certain conditions
on E and A. the interpolation problem (I) will reduce to the Birkhoff inter­
polation of polynomials.

In order to establish necessary conditions for E to be poised we define

111 1 ·.·.c I ej,l •

j~U

and
I:

1"1,.. = L 11/1 :
I~U
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that is, mt is the number of I's in column ( and M k is the number of I's in
columns 0 through k. Let g be the set of all entire functions and P be the set
of all complex polynomials. Similar to the necessary P61ya conditions ob­
tained by Schoenberg [5] in the Birkhoff problem, we have

THEOREM I. Let A be a linear class of entire functions II'hich satisfies
peA c g. An incidence matrix E is poised with respect to A only if

M" ~ k + I, k =0, I, ....

We refer to the above inequalities as the P6lya conditions. The following
argument is similiar to the one given in [5]. In fact, suppose M s < s + I for
some s. All polynomials of degree :s:;; s satisfy homogeneous Eqs. (1) for
each column k > s. Since M.< < s + I, columns 0 though s prescribe less
than s + I equations. Hence, there exists a nontrivial polynomial of degree
:s; s which satisfies homogeneous Eqs. (1) for columns 0 through sand,
therefore, interpolates E.

2. REDUCTIO)\; TO POLYNOMIAL INTERPOLATION

Depending on the arrangement of the entries of I's in E, the interpolation
funtions can be restricted in growth so that E will be poised if and only if E
is poised with respect to a set of polynomials. Let P s be the set of polynomials
of degree :s:;; s and let ..1 r be the set of entire functions of exponential type
< r. If either j or k is negative, then ej," = O. Let En be the truncated matrix
En = (eu,)r;;,o.O<!<n-1 . We have the following

LE'v1'vfA I, Suppose E contains a roll', column or diagonal lI'ith at most a
finite number ofO's; that is, let for some nonnegatil'e integers m and n,

or

or

o = em .n- 1 , I = eUl,n = em ,n..1..1 = "',

0= en /. n , 1 = e,n--;-l.n = eHl -;-2,n = "',

°= em-l. n - 1 ' I = em •n = em+l. n+ 1 = ''',

(2)

(3)

(4)

respectively. Then E is poised Il'ith respect to g, ..1" or ..1 1 , respectively, if and
only if E (or, equivalently, En) is poised lI'ith respect to Pn-1 , where P-1

contains only the trivial function e.

Proof A polynomial f E Pn-1 satisfies all homogeneous Eqs. (I) for
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k > II. Hence it interpolates E if and only if it interpolates E" . If E is poised
with respect to r LI" or Ll i . then E is poised with respect to P r, I . since
P" I C Ll i C LlO" C f

It will be sho\\I1 that any IE t. LI" . or LI[ which interpolates E. satisfying
(2), (3), or (4). respectively. must be a polynomial of degree 11 -- I. com­
pleting the proof of the lemma.

Any entire function f can be written as j(:::) = LLo ad::: - 111)/'. where
ak = jU,I(m)k!. If E satisfies (2) and f interpolates E, then jU, 1(111) = 0, for

1/-1
k = 11,11 -- I, .... Thusj(:::) ~~ L"~o a,,(::: - 111)1. andfE P" I'

Next. suppose E satisfies (3). By a theorem due to Carlson [cf. I]. iff ELI"
and j(k) = °for k = 0. I, ... , then f = 0. Let fELl" be a function which
interpolates E. From (3), fi"l(fIl + k) = °for k = I. 2, .... Since F(z) =

finl(::: - m - l) is also an element of LI" and F(k) = j\rl)(k - III I) = °
for k = 0, I, ... , then F(:::) ccO' 0. Therefore,fi,I)(:::) c=- °and SOfE P,,_I'

Using Abel series for entire functions one proves (cf. [l, p. 170]) that if
fELI[ andfi"l(n) =0,11 =0, l •... ,thenf==O. SupposefELl I is a function
which interpolates E, and satisfies (4). Then F(::) ~ fi"l(:: -- Ill) is an element
of LI[ and from (4) we have F""(k) =firl 1,1(m - k) - 0, k = 0. I. .... Hence
fi"I(::: - fIl) = F(:::) == ° and fE P" I' which completes the proof of
Lemma I.

If a polynomial pEPn-I interpolates E" . and if the column s of E" .°< s ~ n - 1 has infinitely many ones, then p('I(:::) has infinitely many
zeros. This implies that p\SI(:::) == °and so that p is of degree ~ s - I. This
allows us to improve Lemma I somewhat. From Lemma I and the above
remark we deduce

THEOREM 2. Suppose that E satisfies (2), (3), or (4) for some integers n, fIl.

Let s be the smallest integer k, - I .-:;; k -; n - I so that column k of E has
infinitely many ones. If there is no such k, we put s = n. Then E is poised with
respect to t, LI" , or LI[ , respectively if and only if E, is poised with respect to
P,<-[ .

From the definition of s it follows that the matrix Es has only finitely many
ones. We can omit from E, all rows that are identically zero. If q is the
number of nonzero rows, we obtain in this way a finite q ., s incidence
matrix E. If the number a of ones in E satisfies a j s, our problem reduces
to the interpolation of E by polynomials from P, [ or, equivalently, from
Po-I' This is the standard Birkhoff interpolation problem for polynomials,
discussed in [3,4,6]. However, if a < s, Theorem I shows that Eand hence
E are not poised with respect to t, LI" , or LI[ , respectively.



BIRKHOFF I~TERPOLATION

3. SUPPLEMENTARY Rows
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We shall now give sufficient conditions for poisedness which cannot be
obtained from theorems about interpolating polynomials. The function
fez) = sin(7T/2m) z interpolates

I 0 I 0
o 0 0 0

E= 0 0 0 0
o I 0 1
o 0 0 0

which contains alternating entries of O's and I's in rows 0 and m, even though
E contains many 1's and satisfies the P61ya conditions. In view of this example,
\ve shall consider entire functions of smaller growth and infinite incidence
matrices which contain supplementary rows defined by

DEFINITION. Roil'S m 1 , m~ ,... , I1l p of an infinite incidence matrix E are
supplementary rOIl's if

"2: em".i ;-.:: 1,
k~l

.i = 0,1, ....

In the above example, rows 0 and m are supplementary. We now prove

THEOROI 3. Suppose £ contains supplementary rows m1 < m 2 < ,..
< 111 JJ , P ~ 2, then E is poised lI'ith respect to .1" . where y = c/(e(I11'[J - m1))

and c satisfies eO = 2c ~ I (c "'-' 1.256 and c'e ro..- .462).

Proof of Theorem 3. Suppose fE .1" interpolates E. Let g(.:) = f((m" ­
m1) :: -- m1). Then g(z) is of the same order as f, but has type T < cleo In
addition,

fori = 0, 1, .... (5)

We now construct a new matrix H with the same entries as E: however,
each row k represents interpolation at (k - 1111)/(m" - m1). By (5), g satisfies
H. Now, let dk = (m" - m1):{m" - 1111) for k = 1,2.... , p. Let row :x" of H
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be the row that represents interpolation at dA;' Then. rows '1"'" '1' of H
which correspond to rows /1/ 1 , ... , /1/ p of E are supplementary. Note that
dl = 0, d p = I, dA; :S; I for I ,( k:S; p and g(dA;) = f(/1/J.

Since rows "I , ... , U: p are supplementary. we can define a function h:
Z ~ {:Xl'"'' ,:xv} by the following:

\\ here k = max {I: e . = 11.
Ie; IC;;p '[.} J

Thus, we have

j = 1,2,....

Since g is entire, we can write g(.:) = 2::=0 anzn . By the convergence of this
series, we have for each k = I, ... , p,

g(z) = Lan':" = L an(z - dJ.. + d,J"
n=O n=O

= L b~J(z - d/,Y-
;~o

where
x

(jl(d ) ., - b~k - " (lI'j(d )/-j k ~ Ig l,; !.J. - j - L . l,; an, ~ ,... , p
,,~j •./..

and (d,Jo = I, even if dl,; = 0, since g(jl(O)!i! = aj .

By the definition of h, we have b~(j) = 0, j = I, 2, .... That is, letting f3(j) =
dl,; , where h(j) = L'i. .. ' we have

j = 1,2, .... (6)

Since g is of growth category (p, T) < (1, c!e), we have [cf. I] for large n,
I an : ~ (p.!n)n, where 0 < P. < c. Choose to so that (p./c) < to < 1 and let tl
= (p.!to) < c. Then, we have for all large n, i an I ~ to" . tl"/n"; hence,
nn [ an [Itln ~ ton. Since to < 1, the left hand side of the last inequality goes
to zero as n ~ 00. We may write an = Cn . tln!nn, where {en} is a sequence of
complex numbers such that c" ~ 0 as n ~ if:; and L~~l i Cn [2 < oc,.
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Hence, (6) becomes
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en n) t "
,,~j C({J(j)n-j .~ . c" = 0, j = 1,2,.... (7)

which is an infinite homogeneous system of equations and can be written as
the matrix equation LC = 0, where C = (c1 , c2 , ... ,) and L = (Ii,,,) is
given by

J. = (n) (r:I(,'»n-1 . t nln"
J,n j fJ. 1 I ,

=0,

ifn ~),

if 11 <j.

Thus, L is an upper triangular matrix.
[t is easy to see that L,,»i I (i.n 1

2 < 00, for eachj. By a theorem due to Ching
and Chui [cf. 2], if

'"L li,n ~ Ij,j ,
n=j+l

.i = 1,2, ....

(Ij ." ~ 0,), n = 1,2,... ,), then the only solution to (7) is the trivial solution
C = °and, hence, a" = 0, n = 1,2,....

Thus, we must show

~ (/~) (r:I( '»"-i K ~ t~} .
L , fJ.I n" ,1

n~1-;-1 ' .

Since fJ(j) ~ 1 for all),

It can be easily shown that

max {(j/(m +.i»i} = 1/(111 -!- 1).
j~l .... ,

Using (8), we have

x t j x tIll 1
" J. <...!..." _1_ . _
L j.Il "'" ,'j L 111! 111 + 1

n~J+1 ,m~l

t/ el, - I - t1
ji t1

(8)
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Thu~. \\ e wish to sho\\' that ('" - I - ].t 1 O. The function r(x)

(" - I - 2x has two roots. x 0 and x .~ c. Also. rex) " 0 for 0 .': x c
and rex) -. 0 everywhere else. Since 0 .:: t1 <: c. then «(h - I . (1) t1 I.
Hence.

I I,."
il- ;--1

t '1

T i, .. '

and so 0 = a1 = a~ =c .... Thus g(z) ~ au . Since rows 11 , ... , '1.)) are supple­
mentary, there exists at least one k such that e"k'o = 1, which implies g(d,Jc 0
and so g =::: O. Therefore,f(z) = g«z - 1111)'(111]) - 1111) c: cO, which completes
the proof.

4. FI'\Al REMARKS

It should be noted that we do not know whether or not the growth restric­
tion of type y < c.'e in Theorem 3 is tight, due to difficulty in finding a
counterexample.
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